How to Construct Loci Equidistant from 2 intersecting Lines – ExplainingMaths com IGCSE GCSE Maths



welcome to this video about the loci equidistance from two lines we're going to construct it but before I do just a quick summary we've done loci from a points we've done loci from online loci equidistance to two points and now the final one equidistance to two intersecting lines and we realize that loci means all the points fitting a particular description okay so make sure you've seen those videos before you have a look at this one and you can check my site explaining maps those boom well you're gonna find out my resources nicely put together for you okay now let's say I have the line a B okay over there and I'll make another line let's say of an angle of 60 degrees AC okay now that this could be the shore perhaps of so this is the land okay and then we have the C in the middle and this boat wants to make sure that it sells exactly equidistance of a C to a B so exactly in the middle yeah so just your gut feeling exactly equal is from those two lines you know this boat has to roughly seal like that do we agree with that equidistance yeah so I'm not going to silver here I'm not gonna seal here because that's near its baby in a to AC now I'm gonna seal exactly in the middle but this is not estimation yeah this is not science guys this has maps yeah we do things properly and accurately so how do we do that we have to construct the angle bisector well done yeah so before I do very quickly loci from a point you do the circle okay with a radius looking for particular amounts loci from a line parallel lines yeah but then at the vertices semi circles depending on the question anyway this is from two points in my previous video the perpendicular bisector or line bisector an equidistant from two lines it is the angle bisector now I told you this is an angle of 60 degrees it's going to be 30 30 degrees but we have to strucked it and in other videos I've shown you how to do that but I'll show you now again it's very easy you have a compass and make sure you buy a compress they're not expensive but when you open it that it stays in the same position sorry excuse me yeah so that it doesn't move okay make sure you buy a proper compass okay what do I do I open my compass doesn't matter how far but not too far because it's difficult to work with not too close possessed it puts work if I just open it a couple of centimeters but once I decide upon a particular wheel doesn't matter how wide once I've decided I gotta stay or stick to that way okay what am I going to do I'm gonna put the needle in my angle and I'm gonna intersects intersects I should say those legs that creates my my angle okay so that's there and there I'm not sure if you can see that so I'm in black I'm just going to just going to trace that with Marco so this art of the server but are okay I do not have to draw the entire circle the other this is going to confuse me I'm only interested in those intersecting parts with the arms of my angle okay very carefully I'm not going to change the width and if I accidentally change the with my compass I just have to start over again doesn't matter but if the width is still say I'm going to put my needle now at this point of intersection and draw this arc of the circle and I'm gonna do the same from this point of intersection and roll that Park over there now why again don't I not do I don't have to draw the entire circle I know that my angular bisector is going in that direction so I'm looking for this point of intersection and again I'll trace what I just did with my compass I'm looking for that point of intersection over here yeah so I don't have to draw the the rest of the circle because from my angle through that point of intersection so my estimation early on was quite accurate actually this is my Oh angular bisector and I'll tell you that a long time ago I was in the Navy and we used to do this all the time yeah creating the loci of points equidistant to two line set because that we knew how to navigate the ship and I'm pretty sure that's still doings okay so it's the angular bisector good like I can't share if this was useful guys then I can help your friends to check my site explaining my hostel Tacoma you can ask me questions there if you want in a forum I'll help you you'll find all the videos basically you need to pass your Maps ourselves yeah all for free by the way I'll see you it

How to construct angle of 90 degree using Compass



welcome to education channel this video I am going to explain you how to consider to nineteen ninety degrees using only compass how to construct 90 degrees angle with compass and explain first we'll take a line segment now at this point at this point I want exactly consider to a 90 degrees angle so what you take first this from this point any point this is an American construct 90 degrees so I'm going to concerts night right to say I mean 90 degrees line there's some reasonable radius so don't take more than a very small take some radius and this is a center point and drawn out actually 90 is off of the 180 right 180 divided by two is ninety if I can find out 180 degree point then I can buy 6 0 and 180 from here I draw a not without changing the radius previous how much until you drop how much radius you are drawn without changing this now me here cut this arc and again from this point became Amarok again from here one more on that means this is 60 degrees and this is 120 degrees and remaining is 180 degree now this is a zero point and this is 180 degree point right now 0 and 185 bisect then 90 will come need not to extend the line at this point I want know this is the a so at the point yeah I mean 90 degrees so from a troy log first 60 120 and 180 three arcs if I got now from 0 and this one zero and 180 I have to bisect so from zero just take more radius draw an arc a bow because I am visible again same radius from 180 mark because I'm bisecting zero and 180 so 90 we come the simple logic 0 arc and from our nadh on dry not with the same radius no wait they join the both points just to draw a line from the now this angle if you keep the point C so angle B is exactly 90 degrees so you can check with protractor I kept it so exactly 90 degrees so this is the way we can construct until 90 degrees at any point okay we'll check from this is right curves one more thing I'll show you one more example I would construct 90 degrees they said awesome so what we'll take from the center point we just draw an arc right with the same radius factor to us and from yeah so zero point and one negative point in extent zero and 180 so I need to bisect this now this is 180 point cut our kaboom and from here be same they both both six from the zero point and 180 point and then joy if we join the two points so this is the angle 90 so you can use any side any way to not only these any line segment is given at any point we can construct 90 degrees using compass

How to construct a kite using a compass and a straightedge



Welkom terug na Speller Tutorial
Dienste. In vandag se video wil ons gaan voort met ons konstrukte vandag ons is
gaan die vlieër met a bou reguit rand en 'n kompas wat ons begin
deur 'n lynstuk te teken en ook te weet dat hierdie vorm of die veelhoeke ons is
Om die vlieër te teken is 'n basiese vlieër dat jy gesien het hoe kinders by parke vlieg
vier jaar sal ek hiermee begin Hierdie lynstuk laat ons die twee etiketteer
eindpunte a en b en laat ons nou vat uit ons kompas gereedskap met die kompas
instrument, laat ons die puntige einde op ons sit begin hier op B en ons moet seker maak
dat die radius van hierdie kompas instrument is stel dat dit meer as die helfte van die lengte is
van 'n B as dit klaar is, laat ons 'n teken trek boog en laat ons dan beweeg om te eindig
Wys a en laat ons dieselfde ding doen By eindpunt a teken ons die tweede boog
en ons soek daardie kruising en ons gaan dit noem
kruis hier C en laat ons nou die kruising wat ons hier by die
onder en laat ons die radius van die kompas en laat ons ons boog teken
hier aan die onderkant en dan laat ons beweeg die puntige punt hierheen om te wees of
eindpunt B en kom ons doen dieselfde ding deur nog 'n boog te voltooi
vir daardie kruising en laat ons se naam hierdie kruispunt hier D alright een keer ons
het ons kruisings wat ons nou nodig het Neem die reguit rand en ons moet
koppel ons eindpunte aan dié aan diegene kruisings goed, laat ons hier begin
deur middel van kruising C met eindpunt met eindpunt B een keer reg
Dit is in plek, laat ons hierdie lyn teken Ons sal dit net ongedaan maak, laat ons dit teken
lyn segment hier Goed en nou gaan ons voort en
beweeg na 'n let se oor na a en kom ons doen en doen dieselfde ding
hier gaan ons van 'n twee gaan om te sien Ons is reg op C en ons is
hier by a en laat ons dit teken kruis hier of teken hierdie lyn
segment sodat hulle hier goed sny laat ons nou koppel
laat ons nou 'n D versamel en van 'n D aansluit Goed daar is ons op en ons
swaai dit terug net 'n bietjie vir D alright En laas maar nie die minste nie, laat ons dit so heroriënteer
dat ons D en B kan koppel, laat ons ongedaan maak wat kom ons hier nader
Goed, sodat daar vir D en D is Kom ons gaan voort en maak dit 'n bietjie skoon
deur ontslae te raak van hierdie boë en dan Ons gaan 'n paar merke byvoeg om te wys
sommige van die eienskappe van a van a vlieër in orde eerste laat ons gaan en
Voeg nog 'n diagonaal by, dit is hier diagonale een wat ek die D een gaan benoem
hier in groen en laat ons ons dan beweeg reguit rand oor en dan gaan ons gaan
voor en teken ook diagonaal so weer laat ons dit hier by C
en dan gaan ons ons lyn uitbrei Segment hier tot 2 D, so kom ons kry
wat opgerig oops, laat ons dit oorskommel Goed, sodat daar goed moet wees
genoeg vir 4 D Goed, sodra ons getrek of klaar is
ons konstruksie kom ons gaan voort en Merk hierdie diagonaal hier d2 en dan
Kom ons praat oor sommige van die eienskappe sodra ons ons een keer het
het ons vlieër die twee aangrensende getrek sye gaan kongruent hê
lengtes bo-aan die twee kante of die Daar is ook twee segmente aan die onderkant
gaan kan groei in lengtehoek a hierbo gaan kongruent wees
hoek B en hierdie twee diagonale wanneer hulle sny hulle gaan
sny die skep van 'n loodregte en dit gaan hier vir diagonale wees
een die linker kant gaan wees kongruent aan die regterkant
op die oomblik is dit opsom vir ons konstruksie van 'n vlieër met beide a
reguit rand en 'n kompas dankie weer om nog 'n video te kyk
spello tutoriaal dienste asseblief vriend ons op Facebook en ook inteken op ons
U Tube kanaal beide gevind onder die dieselfde naam en altyd dankie vir
kyk